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1. Introduction

The Census TopDown Algorithm (TDA) outputs microdata that satisfy either pure or zero-concentrated
differential privacy (DP). The TDA begins by estimating the differentially private data histogram at the
coarsest (highest) geographic level, or geolevel in a hierarchy, which is the U.S. (or the Commonwealth
of Puerto Rico). Next, TDA estimates differentially private data histograms at progressively finer (lower)
geographic granularity, subject to the constraint that these histograms are consistent with the estimates of
next-higher (parent) geolevels. TDA processes the geolevels in a hierarchy given by, U.S., state, county,
tract group, tract, block group, and block. Geounits are defined as the geographic entities in each of these
geolevels. The definition of the geounits in this hierarchy is called the geographic spine.

TDA originally used the conventional geographic spine based on the Census Bureau Geography Division
definitions of state, county, tract, block group, and block. Block groups, as defined by the Census Bureau’s
Geography Division, are the smallest geographic tabulation areas for the American Community Survey.
Tracts, as defined by the Geography Division, are statistical tabulation areas used by decennial censuses and
the American Community Survey. For both of these definitions, the tabulation geographies are designed to
produce statistics on meaningful areas that can be usefully compared over time. Note that the geographic
spine is a construct that is used internally in the TDA, and, even when the geographic spine used within the
TDA does not correspond to this conventional spine, the statistical tabulations based on the TDA output
define all geounits, including tracts and block groups, by Geography Division’s standard definitions.

In order to ensure computational feasibility and enhance the accuracy of statistical tabulations, TDA
created tract groups and redefined block groups in a consistent manner with the hierarchical structure of
all geographic spines and the Geography Division’s definitions of counties, tracts, and blocks. In particular,
TDA used tract groups and redefined block groups to reduce the number of child geounits of parent geounits,
called the fanout values.

The conventional spine, as defined by Geography Division, had two primary shortcomings when used
within TDA. First, legally defined American Indian/Alaska Native/Native Hawaiian (AIAN) tribal areas
are usually far from this spine, meaning that many on-spine geounits must be added to or subtracted
from one another to compose these geographic areas. Being distant from the spine often results in query
count estimates with greater mean squared error than equivalent geounits that are on-spine. Second, the
conventional spine also places many other important legal, political or Census-designated entities far from
the spine. These include minor civil divisions (MCDs) in regions that are both within strong-MCD states and
outside of AIAN tribal areas, and incorporated places in regions that are either outside of the strong-MCD
states or within AIAN areas. Collectively, we refer to these geographic entities as the Place/MCD entities
(PMEs) in the remainder of the paper.
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To ameliorate the off-spine distance of AIAN tribal areas, TDA placed the state-level aggregate of all
AIAN tribal areas on the spine. Then, TDA redefined each geounit at the state geolevel and below by the
intersection of this geounit’s original definition and either the on-spine AIAN areas or their complement. This
geographic hierarchy is called the AIAN spine. It was audited by the Geography Division for correctness
in defining the AIAN tribal areas and their complements according to the final 2020 Census tabulation
geographies.

This document describes several optimization heuristics that perform updates on the AIAN spine to
enhance a few aspects of the spine, and we call the resulting geographic spine the optimized spine. First,
the spine optimization methods redefine block groups and tract groups to bring a user specified set of off-
spine entities (OSEs) closer to the spine. The current definition of OSEs used within the TDA includes
both PMEs, and, to decrease the correlation between blocks with group quarters (GQs) and their nearby
counterparts, for each tract and each combination of the seven major GQ types, the union of all blocks
within the tract that contain GQs of each type in the GQ type combination. These redefinitions also ensure
that fan-out values are not too high. After this is done, the second stage of the spine optimization algorithm
reduces the variance of the final estimate by ensuring that fan-out values of the spine are also not too low,
using a heuristic based on the variance matrix of the OLS estimator. For example, this decision rule results
in parent geounits that only have one child being bypassed, the consistency with parent constraints require
that the count estimates of the child are equal to those of the parent, so bypassing the parent geounit, or
reallocating all of the privacy loss budget (PLB) from the parent to the child and then removing the parent,
reduces the variance of the DP answers used to derive the final histogram estimate.

The heuristics used in these optimization routines are based on existing results from the DP literature,
which are provided in Section 2. Afterward, Section 3 describes how geographic spines are represented here
using matrices, and a summary of the remainder of the paper is also provided in this section. Afterward,
the method used in the first stage is described Section 4. Section 5 describes the method used in the second
stage and provides a result on the privacy guarantees of the TDA when an optimized spine is used. The
next subsection outlines the notation used throughout this paper.

1.1. Notation. Throughout the paper we will denote matrices using capitalized font, and vectors using
lower case bold font. Also, let the Kronecker product of the real matrices A,B be denoted by A ⊗ B,
and elementwise division, when these matrices are conformable, by A� B respectively. We will denote the
elementwise absolute value of the real matrix A by |A|. A length N column vector with each element equal
to c ∈ R1 will be denoted by cN , and, when there is little risk of confusion, we will omit the subscript N.

We will make use of several probability distributions, but two are worth pointing out explicitly, as their
definitions are less standard. First, we will define the discrete Gaussian random variable so that its probability
mass function, f : Z → R, is given by f(x) ∝ exp(−(x − µ)2/(2σ2)), and denote the distribution of this
random variable by NZ(µ, σ2); see for example, [4]. Second, we will also define the discrete Laplace random
variable so that its probability mass function, f : Z→ R, is given by f(x) ∝ exp(−|x−µ|/b), and denote the
distribution of this random variable by LaplaceZ(µ, σ2); see for example, [8]. We also conform with the usual
notation for the (continuous) Gaussian distribution and denote the distributions of length n column vectors
with elements that are distributed as NZ(µi, ci), Laplace(µi, ci), and LaplaceZ(µi, ci), where µ ∈ Rn and
c ∈ Rn+, by NZ(µ,diag(c)), Laplace(µ,diag(c)), and LaplaceZ(µ,diag(c)) respectively.

2. Differential Privacy

2.1. Privacy Definitions. The definitions of pure and approximate differential privacy are provided by
[6, 7], and these definitions are also restated below. Both definitions can be viewed as a limit on the
difference between the distribution of a mechanism’s output when the input is a given database and the
distribution of the output when the input is a neighboring database. The specific notion of difference used in
these definitions, along with their required upper bounds, is generally self evident, but more care is required
in the case of the notion of neighboring database. This is because there are multiple definitions for this term
that are commonly used, but the privacy semantic guarantees that these definitions imply are different from
one another. For example, two databases are said to be unbounded neighbors if one database can be derived
by adding or removing a record from the other database; likewise, two databases are said to be bounded
neighbors if one database can be derived from the other by adding one record and removing one record [10].
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In other words, the set of unbounded neighbors can be written as {x, x′ ∈ X d | dH(x, x′) = 2}, where X d is
the set of databases with d records, and the set of unbounded neighbors as {x, x′ | dH(x, x′) = 1}.

The definition of neighbor has important implications because the upper bounds provided in the privacy
guarantees below can be translated into an upper bound on the power of any statistical test of the null
hypothesis that the input database is x verse the alternative that it is a neighbor of x [5, 13]. For example,
using bounded neighbors does not provide a theoretical bound on the accuracy of inferences on the number
of records in the input database. However, in the case of tests with a null hypothesis that the database is x
and an alternative hypothesis that it is a given bounded neighbor of x, formal privacy definitions that use
bounded neighbors provide stronger limitations on the accuracy of privacy attackers’ inferences. This can
be shown for the privacy definitions below using the fact that a bounded neighbor of a given database is also
an “unbounded neighbor of an unbounded neighbor” of the database.

The privacy guarantees provided by the TDA use a unique definition of neighbor that does not protect
against certain inferences. Specifically, TDA does not protect each state’s total population or the locations
of each group quarter type. In other words, TDA outputs a database with state total populations that are
identical to those of the input database, and, since at least one person must reside in each group quarter
by the Census definition of group quarter, the population residing in each group quarter type in a given
geounit is constrained to be at least the number of group quarters of that type within the geounit. For
more detail on these two categories of data-dependent constraints imposed by TDA, as well as those that
are data-independent, see [1].

For this reason, in the context of the TDA, two databases are said to be neighbors if one database can
be derived from the other by adding one record to a given state and then removing one record from that
same state, such that both databases also satisfy the group quarters invariant constraints. To emphasize
this definition of neighbors in the presence of invariant constraints in our privacy definitions below, we will
define the set of pairs of neighboring databases as {x, x′ ∈ U | dH(x, x′) = 2}, where U is a given universal
set of databases. For example, this notation is a generalization of the definition of bounded neighbors, which
used U = §d. In the results throughout this paper that use these privacy definitions, we will denote the set of
databases that satisfy these group quarter invariant constraints as G and the set of databases with di records
in each state i as X d. Using this notation, the definition of neighbors used by the TDA can be written as,
{x, x′ ∈ X d ∩ G | dH(x, x′) = 2}.

Definition 1. (Pure/Approximate Differential Privacy [6, 7]) A randomized algorithm M : U → Y satisfies
approximate (ε, δ)-differential privacy if, for all (x, x′) ∈ {x, x′ ∈ U | dH(x, x′) = 2} and all E ⊂ Y, we have
P(M(x) ∈ E) ≤ exp(ε)P(M(x′) ∈ E) + δ. Also, we say a randomized algorithm satisfies pure ε–differential
privacy if it satisfies (ε, 0)–differential privacy.

The definition of ρ–zero-concentrated DP (ρ–zCDP) [3, 4, 2] is provided below. We will primarily use
ρ–zCDP as an intermediate privacy accounting tool when deriving an approximate DP mechanism; a result
from [4], which is restated in the next subsection, provides a way to translate ρ–zCDP privacy guarantees
to (ε, δ)–DP privacy guarantees.

Definition 2. (Zero-Concentrated Differential Privacy (zCDP) [2]) A randomized mechanism M : U → Y
is ρ–zero-concentrated differentially private (ρ–zCDP) if, for all x, x′ ∈ {x, x′ ∈ U | dH(x, x′) = 2}, all
α ∈ (1,∞), and all events E ⊂ Y,

Dα(M(x)||M(x′)) ≤ ρα,

where Dα(P ||Q) = log
(∑

E∈Y P (E)αQ(E)(1−α)
)
/(α − 1) is the Rényi divergence of order α between the

distributions P and Q.

2.2. Privacy-Loss Accounting Results. A general pattern in our proofs that the TDA is DP will be to
first establish that the DP primitive mechanism for each query i is either εi–DP or ρi–zCDP, and then use
parallel and sequential composition to show that the combination of all of the DP primitive query answers
used in the TDA are

∑
i εi–DP or

∑
i ρi–zCDP. In the case of approximate DP, we will also require the final

step of ensuring that
∑
i ρi implies (ε, δ)–DP. This section contains these intermediate results that will be

used in these proofs. The first two results will be used in the next subsection to show that each DP primitive
mechanism satisfies (ε, 0)–DP or ρ–zCDP.
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Lemma 1. (Theorem 3.2 [8]) Let ∆, ε > 0. Let q : U → Z satisfy |q(x)− q(x′)| ≤ ∆ for all x, x′ ∈ {x, x′ ∈
U | dH(x, x′) = 2}. Define a randomized algorithm by M(x) = q(x) + Y where either Y ∼ LaplaceZ(0,∆/ε)
or Y ∼ Laplace(0,∆/ε). Then M satisfies ε–DP.

Lemma 2. (Theorem 4 [3, 4]) Let ∆, ε > 0. Let q : U → Z satisfy |q(x)− q(x′)| ≤ ∆ for all x, x′ ∈ {x, x′ ∈
U | dH(x, x′) = 2}. Define a randomized algorithm by M(x) = q(x) + Y where either Y ∼ NZ(0,∆2/(2ρ)) or
Y ∼ N(0,∆2/(2ρ)). Then M satisfies ρ–zCDP.

While providing a comprehensive compilation of the properties that are implied by a mechanism satisfying
either (ε, δ)–DP or ρ–zCDP is beyond the scope of this paper, there are a few of these properties that we
make use of below that are worth explicitly pointing out. First, these privacy guarantees share the property
that they are invariant to post-processing. In other words, if M : U → Y satisfies either of these privacy
guarantees, then so does the mechanism f ◦M, where f : Y → Z. Second, if M1(x) is ε1–DP (respectively,
ρ1–zCDP) and M2(x) is ε2–DP (ρ2–zCDP) then releasing the output of M1(x) and M2(x) simultaneously
is itself (ε1 + ε2)–DP ((ρ1 + ρ2)–zCDP), which is called sequential composition. In some cases in which
M1(x) and M2(x) only depend on disjoint subsets of the arbitrary dataset x ∈ U , releasing the outputs of
both of these mechanisms simultaneously is (max {ε1, ε2})–DP (respectively, (max {ρ1, ρ2})–zCDP), which
is known as parallel composition. Specifically, the following lemma uses sequential and parallel composition
to provide privacy guarantees for a mechanism that is defined by multiple univariate mechanisms described
in Lemmas 1 and 2.

Lemma 3. (Theorem 14 [4], Proposition 1 [6], Theorem 3.2 [8]) Suppose x, x′ ∈ X d differ on a single entry,
and let a randomized algorithm M : X d → Ym be defined by M(x) = q(x) + y where q : X d → Ym and y is
an m dimensional column vector of independent random variables. Then we have the following.

(1) Let b1, . . . , bm > 0, ε > 0, and
∑m
j=1

|qj(x)−qj(x′)|
bj

≤ ε. If, for all j ∈ {1, . . . ,m}, either yj ∼
LaplaceZ(0, bj) or yj ∼ Laplace(0, bj), then M satisfies ε–DP.

(2) Let σ1, . . . , σm > 0, ρ > 0, and
∑m
j=1

(qj(x)−qj(x′))2

σ2
j

≤ 2ρ. If, for all j ∈ {1, . . . ,m}, either yj ∼
NZ(0, σ2

j ) or yj ∼ N(0, σ2
j ), then M satisfies ρ–zCDP.

The next result provides a way to translate between an (ε, δ)–DP guarantee and a ρ–zCDP guarantee. Note
that this result implicitly defines ρ in terms of ε, δ. After ρ is computed numerically using this result, the
TDA scales the parameters denoted by σ2 that are used within the DP primitive mechanisms to ensure that
releasing a combination of all of these primitive mechanisms simultaneously satisfies (ε, δ)–DP. We refer the
interested reader to [3, 4] for more detail on how the optimization problem below can be solved efficiently
within the numerical method used to compute ρ.

Lemma 4. (Proposition 7 [3], Corollary 13 [4]) Let M : U → Y be a randomized algorithm satisfying
ρ–zCDP. Then M is (ε, δ)–DP for any ε ≥ 0 and δ given by the unique solution of,

inf
α∈(1,∞)

exp ((α− 1)(αρ− ε))
α− 1

(
1− 1

α

)α
.

2.3. Linear Queries And Marginal Query Groups. The notation for each query q(·) in the preceding
subsections is actually more general than required to describe the TDA. Specifically, the TDA only makes
use of linear queries. We will define a linear query as a length n vector, and a linear query answer as the
inner product of a linear query and the histogram cell counts. Since we only consider linear queries from
this point forward, we will sometimes refer to a linear query as a query below. A query matrix is used to
refer to linear queries that are vertically stacked on top of one another.

All elements of the linear queries used within the TDA have elements that are either zero and one, and
they are defined so that each linear query answer provides an individual count for a marginal of the full
histogram. It will be convenient to group the queries providing counts for the same marginal together, so we
will define a query group as the linear queries that provide counts for the same marginal, vertically stacked
on top of one another. For example, suppose the schema of the original database is CENRACE × HISP ×
VOTINGAGE, where CENRACE and HISP indicate which of the 63 Census race combinations, and which
of the two hispanicity levels, the respondent identified as, respectively, and VOTINGAGE indicates if the
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respondent is at least 18 years of age.1 In this case the CENRACE × VOTINGAGE query group is defined
as the matrix

Q = I63 ⊗ 1>2 ⊗ I2,
and right multiplying Q by the vector of histogram cell counts of a database provides the CENRACE ×
VOTINGAGE query group answers. More generally, the query matrix of a given query group is defined
as a matrix that can be written as a series of Kronecker products of identity matrices and row vectors of
ones. Note that this definition encompasses cases in which each of these Kronecker factors are all either row
vectors of ones or are all identity matrices.

One of the inputs of the TDA are either the proportions of PLB, when pure DP primitive mechanisms are
used, or proportions of ρ, when approximate DP primitive mechanisms are used, to allocate to each query
for a given geolevel. The following lemma uses this notational convention, while only considering either a
single geounit, to provide the ε–DP and ρ–zCDP privacy guarantees of releasing the output of the primitive
mechanisms of this geounit.2 This will be used in the next section to provide the privacy guarantees of the
TDA when either the conventional spine or the AIAN spine is used.

Lemma 5. If each Q[i] ∈ {Q[i]}qi=1 is a query group of dimension m[i] × n and the mechanism M(x),
outputs {Q[i]x+y[i]}qi=1, where x is a vector of the histogram counts for a database with d records and y[i]
is a length m[i] column vector of independent random variables, then we have the following.

(1) If, for each i ∈ {1, . . . , q}, we have that y[i] is distributed as either y[i] ∼ Laplace(0,diag(2m[i]/(εα[i])))
or y[i] ∼ LaplaceZ(0,diag(2m[i]/(εα[i]))), where

∑
i α[i] = 1, then M(·) is ε–DP.

(2) If, for each i ∈ {1, . . . , q}, we have that y[i] is distributed as either y[i] ∼ N(0,diag(1m[i]/(ρα[i])))
or y[i] ∼ NZ(0,diag(1m[i]/(ρα[i]))), where

∑
i α[i] = 1, then M(·) is ρ–zCDP.

Proof. Since, for each i ∈ {1, . . . , q}, only one element of each column of Q[i] is nonzero, we will use Lemma
3 to leverage parallel composition to prove both cases. This reduces the problem to carrying out sequential
composition of the set of mechanisms, {M[i](x)}qi , where M[i](x) := Q[i]x + y[i]. In both cases, we will
use the fact that |Q[i]x−Q[i]x′|, where x,x′ are vectors of histogram cell counts of databases differing on a
single entry, is a vector with at most two elements that are equal to one, with the remaining elements equal
to zero.

In the first case, since
∑
j |Q[i]j,·x−Q[i]j,·x

′| ≤ 2, the first case in Lemma 3 impliesM[i](x) is α[i]ε–DP.

Thus, using sequential composition, releasing the output of {M[i](x)}i is
∑
i α[i]ε = ε–DP.

In the second case, since
∑
j |Q[i]j,·x−Q[i]j,·x

′|2 ≤ 2, the second case in Lemma 3 impliesM[i](x) is α[i]ρ–

zCDP. Thus, using sequential composition, releasing the output of {M[i](x)}i is
∑
i α[i]ρ = ρ–zCDP. �

2.4. The Matrix Mechanism. This section will describe a class of random mechanisms known as matrix
mechanisms in the context of linear queries composed of query groups [11]. Using the notation introduced
in Lemma 5, we will assume that each of the errors of the ith query group are random variables that are
distributed as either y[i]j ∼ Laplace(0, 2/(εα[i])), in the case of ε–DP, or y[i]j ∼ N(0, 1/(ρα[i])), in the case

of ρ–zCDP, for every j ∈ {1, . . . ,m[i]}, where α[i] ∈ R++ satisfies
∑
i α[i] = 1. Also, let the workload matrix

W ∈ Rm×n be defined as W := stack({Q[i]}qi ), the errors vector as y := stack({y[i]}qi ), the PLB or precision
proportions vector as α := stack({α[i]m[i]}

q
i=1), and the response variable as z := Wx+y, which is also the

vertically stacked output of the mechanism described in Lemma 5. We will assume that W has full column
rank, which can be ensured by including the detailed cell query group in W (i.e.: the identity matrix).

For both of the distributions that we consider in this section, we can define an alternative response variable
that is observationally equivalent to z, but with homoskedastic errors. For example, in the case of ε–DP,
we have y ∼ Laplace(0,diag(2� (εα))), so we can define the rescaled errors as ỹ := diag(εα/2)y, which are

1While we are using attributes that are part of the census, note that this example, and the queries in this section, are simply

described in the context of a hypothetical survey that does not use a geographic spine. The linear query notation introduced
here will be extended in the next section to account for the presence of the geographic spine.

2Alternatively, for datasets that contain an attribute identifying each respondent’s geounit for a given geolevel, this theorem
can also be used to provide the privacy guarantees of releasing the output of all of the primitive DP mechanisms for the geolevel.

However, depending on how the operation of bypassing geounits is defined, this can be less straightforward in the case of the

optimized spine because there may be respondents in the dataset that are not included in any geounit in the geolevel. This
alternative interpretation of the Lemma will be discussed in more detail in Sections 3, and the operation of bypassing geounits

will be defined in 5.
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distributed as ỹ ∼ Laplace(0, I), the rescaled workload as W̃ := diag(εα/2)W, and the rescaled response

variable as z̃ := diag(εα/2)z = W̃x+ ỹ. In the case of ρ–DP, we have y ∼ N(0,diag(1� (ρα))), so we can
define the rescaled errors as ỹ := diag(

√
ρα)y, which are distributed as ỹ ∼ N(0, I), the rescaled workload

as W̃ := diag(
√
ρα)W, and the rescaled response variable as z̃ := diag(

√
ρα)z = W̃x+ ỹ.

One simple example of a matrix mechanism is a mechanism that releases the ordinary least squares

estimates of Wx. Specifically, this can be done by first estimating x as x̂ := arg minx‖W̃x − z̃‖22 =

(W̃>W̃ )−1W̃>z̃, and then defining the output of the mechanism as W x̂. Note that in either the case of
ε–DP or ρ–zCDP, the privacy guarantee of the final mechanism follows from the fact that a mechanism that
released z̃ would satisfy the same privacy guarantee, along with the invariance to post-processing property.

This simple mechanism can be generalized by making a distinction between the linear query answers
provided as output and the linear queries used to estimate x̂. Specifically, we will define the strategy matrix
A ∈ Rp×n by A := stack({R[i]}ri ), and the query group PLB or precision proportions by {γ[i]}ri . In the same

manner as described above for W, we can define the rescaled strategy matrix as Ã := diag(εγ/2)A, when

deriving an ε–DP mechanism, or Ã := diag(
√
ργ)A, when deriving a ρ–zCDP mechanism. Likewise, the

rescaled error vector and response variable can be defined as above so that z̃ := Ãx + ỹ. The final output
of this matrix mechanism is then given by this alternative estimate of the linear queries in the workload W,

which are W x̂ = W (Ã>Ã)−1Ã>z̃.3

Note that the variance matrix of this output vector is given by,

Var(W x̂) = W (Ã>Ã)−1W>.

Prior works have focused on using this variance matrix to find strategies that provide a low expected sum of

squared errors, which is given by Trace(Var(W x̂)) = Trace(W>W (Ã>Ã)−1); see for example, [11, 12]. We
use an alternative approach to motivate the heuristic used to bypass geounits in Section 5, after introducing
how we represent the spine using matrices in the next section.

3. Representing Linear Queries on the Spine

In this section we will describe how we represent the workload and the strategy matrices that include the
linear queries for each geounit on the spine. To do so, we will first consider the case in which the same query
groups are used in all such geounits, and generalize this notation afterward to the case in which the query
matrix is dependent on the geolevel.

Let the workload of the linear queries for each geounit be denoted byW ∈ Rm×n, whereW = stack({Q[i]}qi )
and each Q[i] is a query group matrix. We will also assign an integer to each block geounit for the purpose of
ordering the blocks. Specifically, we will suppose that the blocks are ordered lexicographically so that blocks
in the same state are adjacent to one another, within each state, blocks in the same county are adjacent, etc.
For example, in the case of the conventional geographic spine, this can be achieved by sorting the blocks
by their 15 digit Census GEOID, as the format of the GEOID is [2 digit state FIPS code][3 digit county
FIPS code][6 digit Census tract code][4 digit Census block code]. We will also periodically refer to geounit
u ∈ {1, . . . , U [l]} in geolevel l ∈ {1, . . . , L} as geounit (l, u).

We will also let b[l, u] denote the number of block level descendants of geounit (l, u). For example, since

all blocks are descendants of the US geounit, there a total of b[1, 1] blocks. Let x ∈ Znb[1,1]+ be a vector of
histogram cell counts over all blocks in the US, ordered in the manner described in the preceding paragraph,
which we will refer to as the true histogram cell counts below. Using this notation, we can express the query
answers to the query matrix W for the US geounit in terms of these block level cell counts as (1>b[1,1]⊗W )x.

Likewise, the query answers for all of the block geounits is (Ib[1,1] ⊗ W )x. More generally, this notation
allows us to express the workload over all geolevels as sums of block level cell counts. Specifically, a possible
workload is

3All of the results and discussion in this paper are also straightforward to extend to the more general case in which the

workloads and strategy matrices are not required to be vertically stacked query group matrices. The most obvious generalization

would be to cases in which one also assigned a weight to each query in the workload matrix. Allowing for this generalization,
or removing the requirement that these matrices are vertically stacked query groups entirely, is also straightforward, and this

would not alter the theorem and observation provided in Section 5.
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V := B ⊗W ∈ RM×N+ ,

where M := m
∑
l U [l], N := nb[1, 1], and,

B :=


B[1]
B[2]

...
B[L− 1]
B[L]

 =



1>b[1,1]
block diag({1>b[2,u]}

U [2]
u=1)

...

block diag({1>b[L−1,u]}
U [L−1]
u=1 )

Ib[1,1]

 .(1)

As a summary of this notation, an example of B ⊗W is shown in Figure 1.
While we will use this definition for the workload over all geolevels when describing a heuristic used in the

spine optimization routines below, it is not actually quite general enough to capture all possible workloads
that a user may specify in the TDA. This is because the TDA also allows users to specify distinct strategy
matrices in each geolevel, but the notation above assumes that the strategy matrix in each geolevel is W.
For this reason, we will also use an alternative definition for the strategy matrix that is general enough to
encompass all possible workloads used by TDA in our results that establish privacy guarantees. To do so,
let W [l] ∈ {W [l]}Ll=1 denote the workload in geolevel l. Using this notation, the workload used within the
TDA can be defined as,

V :=


B[1]⊗W [1]
B[2]⊗W [2]

...
B[L− 1]⊗W [L− 1]

B[L]⊗W [L]

 .(2)

The following theorem uses the notation established so far to show that the TDA is either ε–DP or
ρ–zCDP, depending on whether a pure or approximate DP primitive mechanism is used, when either the
conventional spine or the AIAN spine is used. The fact that geounits can be bypassed in the case of the
optimized spine requires some modifications to this proof, which are described in Section 5. Note that, as in
the proof below, the TDA takes the positive values in the set {β[l]}Ll=1 as input, which define either the PLB
proportions, in the case of pure DP, or the precision proportions, in the case of zCDP, for each geolevel.

Note that in the case of the conventional spine and the AIAN spine, there is no distinction between the
workload matrix and the strategy matrix, as the TDA does not currently alter the per-geounit workloads
{W [l]}l, or the matrix representation of the spine B, in these cases prior to calling the primitive mechanisms.

Theorem 1. Suppose the primitive mechanism M(x) outputs {(B[l]⊗W [l])x+ y[l]}Ll=1, where each W [l]

is defined by vertically stacking the query group matrices {Q[i, l]}q[l]i=1 with Q[i, l] of dimension m[i, l]× n, x
is the true histogram cell counts, and y[l] is a vector of independent random variables.

Also, let {β[l]}Ll=1 be defined so that β[l] ∈ R++ and
∑
l β[l]. Likewise, for each geolevel l ∈ {1, . . . , L}, let

each α[i, l] ∈ {α[i, l]}q[l]i=1, be defined so that α[i, l] ∈ R++ and
∑
i α[i, l] = 1, and let α[l] := stack({α[i, l]m[i,l]}i).

Then we have the following.

(1) If y[l] is distributed as either y[l] ∼ Laplace(0,diag(2� (εβ[l]α[l]))) or y[l] ∼ LaplaceZ(0,diag(2�
(εβ[l]α[l]))), then both M(·) and the TDA are ε–DP with respect to the neighbor definition {x, x′ ∈
X d ∩ G | dH(x, x′) = 2}.

(2) If y[l] is distributed as either y[l] ∼ N(0,diag(1�(ρβ[l]α[l]))) or y[l] ∼ NZ(0,diag(1�(ρβ[l]α[l]))),
then both M(·) and the TDA are ρ–zCDP with respect to the neighbor definition {x, x′ ∈ X d ∩ G |
dH(x, x′) = 2}.

Proof. Note that for each fixed l, we have

B[l]⊗W [l] = B[l]⊗ stack({Q[i, l]}i) = stack({B[l]⊗Q[i, l]}i).
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Figure 1. An example of B ⊗ W is given above. In this example, B is given by
vertical stack(1>2 , I2), which corresponds to the case in which there is one US geounit with
two block geolevel child geounits. Each geounit contains a 2 × 2 histogram, and the linear
queries in W are given by a total sum query (1>2 ⊗ 1>2 ), the marginal query groups for each
attribute (I2 ⊗ 1>2 and 1>2 ⊗ I2), and the detailed cell query group (I2 ⊗ I2). For each of
the geounits, the total sum query is highlighted in green, the marginal query groups are
highlighted in light and dark red, and the detailed cell query group is unhighlighted.

Since each B[l] ⊗ Q[i, l] satisfies the definition of a query group matrix, Lemma 5 implies that releasing
the output of Ml, with output defined as (B[l] ⊗W [l])x + y[l] is (β[l]ε)–DP in the first case and (β[l]ρ)–
zCDP in the second case. Thus, sequential composition implies that the DP primitive mechanism M(·) is∑
l β[l]ε = ε–DP in the first case and

∑
l β[l]ρ = ρ–zCDP in the second case. Since both ρ–zCDP and ε–DP

guarantees are invariant to post-processing, the TDA satisfies the same privacy guarantee as the primitive
mechanisms. �

In order to describe the spine optimization routines, we will require a distinction between the workload
and the strategy matrix. Specifically, this strategy will maintain the same per-geounit queries {W}qi=1 and
the same per-geounit proportions {α[i, l]}i,l as the initial inputs. However, the strategy matrix will alter the
matrix representation of the spine as well as the PLB or precision proportions allocated to each geounit.
We will denote the matrix representation of this alternative spine as A = stack({A[l]}Ll ), which we require
to satisfy the following properties. First, we will constrain our attention to spines that include all blocks,
so A must have the same number of columns as B, which is b(1, 1), and we require the lowest geolevel
to be defined as these blocks, so A[L] := Ib(1,1). Second, the spine must include a US geounit, so we have

A[1] = 1>b(1,1). Third, the spine must include the same number of geolevels and be hierarchical, so, for geolevel

l ∈ {1, . . . , L − 1}, we require each row of A[l] to be equal to the sum of a subset of the rows of A[l + 1].
Since bypassing geounits will result in geounits within the same geolevel having different PLB or precision
proportions, we will also use γ[l, u] to denote the geolevel PLB or precision proportion for each geounit (l, u),
and γ to denote a vector composed of these values, using the same lexicographic ordering of the geounits
described above. We will continue to use {β[l]}Ll to denote the per-geolevel PLB or precision proportions of
the initial spine, and use β to denote the vector stack({β[l]U [l]}Ll ).

Using the terminology from Section 2.4, we will introduce the rescaling vector r ∈ Rm
∑

l U [l]
+ and the

strategy matrix S̃, for later use in Section 5, as,
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S̃ := diag(r)(A⊗W ) = (diag(γ)⊗ diag(αε))(A⊗W ) = (diag(γ)A)⊗ (diag(αε)W ),

in the case in which a pure ε–DP primitive Laplace mechanism is used and,

S̃ := diag(r)(A⊗W ) = (diag(
√
γ)⊗ diag(

√
αρ))(A⊗W ) = (diag(

√
γ)A)⊗ (diag(

√
αρ)W ),

in the case in which a ρ–zCDP primitive Gaussian mechanism is used. Also, let the stacked DP primitive

mechanism answers be defined as z̃ := S̃x+ ỹ, where ỹ = diag(r)y, y = stack({y[l]}Ll=1}), and {y[l]}Ll=1 is
defined as in the previous theorem. Then the OLS estimate for this strategy matrix can be expressed as,

x̂ = (S̃>S̃)−1S̃z̃,(3)

and the variance matrix of the ouput of the matrix mechanism is given by,

Var(V x̂) = V (S̃>S̃)−1V >.(4)

3.1. Summary. There are two stages of the spine optimization routines, and each are described in the next
two sections. The first stage takes the AIAN spine as input and then applies a method that is described in
Section 4. This section introduces the OSE distance (OSED), which, for each OSE, is defined as the number
of on-spine geounits that must be added or subtracted from one another in order to derive the OSE. We
believe that defining geounits to minimize a function (such as the maximum or the mean) of the OSED
values is a non-convex optimization problem, so Section 4 also provides a computationally efficient heuristic
that reduces the OSED by redefining block groups and, when they are included on the spine, tract groups.

The output of the first stage is then updated again using a method that is described in Section 5.
Specifically, this section provides a result that describes when bypassing a geounit on the spine results in
every expected squared error of matrix mechanism either decreasing or remaining unchanged. Afterward,
an algorithm is provided that uses this result to motivate a decision rule for when to bypass a geounit.
The use of this decision rule within the TDA should also be regarded as a heuristic for two reasons. First,
the output of the TDA is not defined using ordinary least squares, so this decision rule is not based on
the actual variance matrix of the output of the TDA. Second, the TDA uses the random noise drawn from
either of the discrete distributions, LaplaceZ(0, b) or NZ(0, σ2), rather than their continuous counterparts,
Laplace(0, b) and N(0, σ2), which are the distributions that motivate this decision rule. The TDA uses the
discrete distributions LaplaceZ(0, b) and NZ(0, σ2) rather than Laplace(0, b) and N(0, σ2) in part because
they provide lower variance, and this same fact implies that using these distributions instead would alter
the decision rule. However, this difference is primarily relevant when the PLB or precision allocated to a
particular query of a geolevel is very large. For example, even when σ2 = 1, using NZ(0, σ2), rather than
N(0, σ2), provides a decrease in the variance of less than 3 · 10−7, and when σ2 = 2, this decrease in variance
is less than 3 ·10−15.4 For this reason, in most practical cases, this second departure from the TDA is unlikely
to be as important as the first.

As described in Section 2.4, the norm in the literature on the matrix mechanism is to minimize the expected
sum of squared error [11, 12]. In our independent experiments, this alternative decision rule resulted in many
more geounits being bypassed, which resulted in a low expected sum of squared error objective function, but
with high values for some individual expected squared errors. This problem persisted even after accounting
for the disproportionate number of terms in this sum from the block level geounits by assigning each geolevel
a PLB or precision proportion that was proportional to the inverse of the number of geounits in the geolevel.
In contrast, the approach that we use is more conservative, in the sense that the input spine is only changed
when doing so would either decrease or not changed the expected squared error of each query of the OLS
estimate. This objective function aligns more closely with our goal when setting geolevel PLB or precision
proportions, which is to ensure that the final query estimates for each geolevel satisfies a certain accuracy
criterion. The only paper that we are aware of that takes a similar approach is [14].

4These values were estimated numerically in Mathematica with 100 digits of precision.
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4. Bringing Off-Spine Entities Closer to the Spine

This section describes how to redefine block groups and tract groups to bring OSEs closer to the spine.
This is done by using a heuristic based on an objective function called the off-spine entity distance (OSED),
which returns the minimum number of geounits that must be added or subtracted from one another to derive
an OSE.5 This heuristic generally results in a reduction in the variance of estimates for these geographic
regions, particularly when sufficient PLB or precision proportion is allocated to the geolevels that are being
redefined.

Before moving onto defining a systematic way in which the OSEDs can be found for each OSE, we will
define some additional notation. Specifically, let the set of OSEs be denoted by K, an arbitrary encoding of
the geographic spine by g, and the set of geounits that are children of geounit u of geolevel l by J [l, u]. Also,
let {Ck(u)}k∈K, where Ck : N+ → {0, 1} denote a set of functions such that Ck(u) = 1 when the OSE k ∈ K
contains the block geounit u and zero otherwise.

We will begin by choosing k ∈ K and finding the OSEDs for both k as well as its complement, which
we will denote by k′, under the assumption that the only geolevel is the block geolevel. In this case, each
block would contribute c[k, L, u] := Ck(u) to the OSED of OSE k. Likewise, each block would contribute
c[k′, L, u] := 1− Ck(u) to the OSED of the complement of k.

If the block-group geolevel is added at this point, we could compose the intersection of a single block group
and k in one of two ways. First, we could add all of the blocks to one another that are both inside of entity
k and inside of the block group. This would result in the block-group u contributing

∑
v∈J(L−1,u) c[k, l, v]

to the OSED of k. On the other hand, we could also take all of the geographic extent that the block group
occupies and then subtract off the geographic region of the blocks in the complement of k. This would result
in this block group contributing 1 +

∑
v∈J(L−1,u) c[k

′, l, v] to the OSED of k. Note that an additional one

is added in this case because of the additional step of subtracting the complement of k in the block group
from the block group itself. Since OSED is defined as the minimum number of geounits that must be added
or subtracted to one another to define an entity, we will choose the option that results in a smaller value.
Since similar derivations can be carried out for the complement of k, by symmetry, we have,

c[k, L− 1, u] := min

 ∑
v∈J(L−1,u)

c[k, l, v], 1 +
∑

v∈J(L−1,u)

c[k′, l, v]

(5)

c[k′, L− 1, u] := min

 ∑
v∈J(L−1,u)

c[k′, l, v], 1 +
∑

v∈J(L−1,u)

c[k, l, v]

 .(6)

Note that (5) and (6) provide a closed form solution for {(c[k, L − 1, u], c[k′, L − 1, u])}u in terms of
{(c[k, L, u], c[k′, L, u])}u. Similar logic can be repeated to derive to derive the following recursive system of
equations.

c[k, l − 1, u] := min

 ∑
v∈J(l−1,u)

c[k, l, v], 1 +
∑

v∈J(l−1,u)

c[k′, l, v]

(7)

c[k′, l − 1, u] := min

 ∑
v∈J(l−1,u)

c[k′, l, v], 1 +
∑

v∈J(l−1,u)

c[k, l, v]

(8)

Since all entities are assumed to be contained within the US, the final OSED for entity k can be found
by applying these recursions to the root geounit and defining this OSED as c[k, 1, 1]. Afterward, our final

5Our use of the term “off-spine entities” refers to geographic entities that may be off of the spine, but we do not assume
that each OSE has a geographic extent that differs from each (on-spine) geounit. An implication of this definition of OSED is

that, when the geographic extent of an OSE is identical to a geounit on the spine, its OSED is equal to one.
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objective function is defined by a reduce operation, such as a function that returns the mean or maximum
OSED. This is summarized in Algorithm 1.

Algorithm 1: OSEDs Reduced(g,K, {Ck(·)}k, h(·), L)

for k ∈ K do
for u ∈ Geounits in Geolevel(L, g) do

c[k, L, u]← Ck(u)
c[k′, L, u]← 1− Ck(u)

for l ∈ {L− 1, L− 2, . . . , 1} do
for u ∈ Geounits in Geolevel(l, g) do

x←
∑
v∈Children(u,l,g) c[k, l + 1, v]

y ←
∑
v∈Children(u,l,g) c[k

′, l + 1, v]

c[k, l, u]← min {x, y + 1}
c[k′, l, u]← min {y, x+ 1}

return h({c[k, 1, 1]}k∈K)

In the most general setting, in which the OSEs are not necessarily disjoint, formulating an algorithm that
redefines block groups and tract groups in order to minimize the OSEDs with a polynomial time complexity
appears to be a difficult problem because of the similarity of this optimization problem to a covering problem.
For this reason, Algorithm 2 describes a greedy approach to approximate the optimal redefinitions of tract
groups in a computationally tractable manner. In contrast, block groups are redefined by combining blocks
within a given tract, and within the same intersection of the OSEs. As described in the code below, each
redefined block group is composed of up to

√
n+ fanout cutoff blocks, where n is the blocks in the redefined

block group’s parent tract and fanout cutoff is a user choice parameter. This choice is motivated by the
fact that the smallest maximum fanout value among a given tract and its child geounits is d

√
ne , where

d·e denotes the cieling function. For example, for a tract with 100 block geounit descendants, redefining its
children by 10 redefined block group child geounits, each with 10 block child geounits, would result in the
lowest possible maximum fanout of 10 among these 11 geounits, so the redefined block groups within this
tract would contain no more than 10 + fanout cutoff blocks in this case. Note that a similar approach, is
used to define the maximum number of tracts within a tract group in Algorithm 2.

This algorithm also uses x �lexicographic y, where x,y ∈ Rn, to denote the lexicographic less than or equal
to partial ordering, which is defined as ⊥ when x 6= y and the first index i for which xi and yi differ satisfies
xi > yi, and > otherwise.

Note that Algorithm 2 does not alter the PLB or precision proportions of the input spine, which is the
AIAN spine. The next section describes the Algorithm used to update these proportions, along with the
spine that is output from Algorithm 2, in the second spine optimization stage.

5. A Pareto Frontier of Geounit Definitions

This section uses a matrix mechanism to provide a decision rule for when it is best to bypass a geounit. To
do so, we will constrain our attention to DP primitive mechanisms that use noise drawn from the continuous
distributions N(·) and Laplace(·). We will also suppose that the matrix B is the matrix representation of the
spine that is used as input of this method. In the case of the TDA, this spine is formed using the output of
Algorithm 2.

It is also worth explicitly stating how we define the operation of bypassing a parent geounit. We define
the operation of bypassing a parent geounit with c children, each with equal PLB or precision proportions,
by, 1) creating c geounits in the geolevel of the parent, each with a geolevel proportion given by the sum of
proportion allocated to the parent and one of the children, 2) defining the single child of each of these c new
geounits by one of the children, 3) removing the old parent geounit, 4) redefining the geolevel proportion of
each child to be zero. Thus, even though we call this operation “bypassing a parent,” this operation actually
moves the geolevel PLB or precision proportion to a higher geolevel. This ensures that this operation does
not change the total number of geolevels, and since the TDA fixes the final estimates in a top-down manner,
so that the consistency with parent constraints are satisfied, this also ensures that the entire share of the
geolevel PLB or precision allocations are used in cases in which a parent geounit has only one child geounit.
While this is the definition of this operation used within the TDA, the decision rules developed in this section
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Algorithm 2: Redefine Block Groups and Tract Groups(g,K, {Ck(·)}k)

// Within each tract, redefine block groups by combining groups of√
n+ fanout cutoff blocks in the intersections of the same OSEs, where n is the

number of blocks in the tract.

// Initialize tract groups so that they each have one child Tract.

current OSEDs ← OSEDs Reduced(g,K, {Ck(·)}k,Sort Descending(·))
for i ∈ {1, . . . } do

g changed← ⊥
for county ∈ Counties(g) do

n← Number of tracts in county(county)
for u, v ∈ Children(county) do

if Card(Children(u) ∪ Children(v)) >
√
n+ fanout cutoff then

continue
g′ ← Combine Siblings(u, v, g)
test OSEDs ← OSEDs Reduced(g′,K, {Ck(·)}k,Sort Descending(·))
if test OSEDs �lexicographic current OSEDs then

g ← g′

current OSEDs ← test OSEDs
g changed← >

if not g changed then
break

return g

only depend on properties of S̃>S̃, and using this definition of the bypass operation impacts this matrix in
the same way as simply reallocating the geolevel PLB or precision proportion of the parent geounit to the
children. For this reason, we motivate the decision rules described in this section on this simpler definition
of the bypass operation.

Using the notation from 3, recall that the expected squared errors of the output of the matrix mechanism

with the strategy matrix S̃ are given by the diagonal of Var(V x̂), as defined in (4). The next result describes
a case in which each of these expected squared errors can be decreased, or remain unchanged, by bypassing
a parent. In cases in which the initial PLB proportion of a parent and its children are equal, this result
simply implies that accuracy can be improved by bypassing over the parent geounit when it has less than or
equal to three child geounits. The decision rule that used for the case in which ρ–zCDP primitive Gaussian
mechanisms are used will be discussed after the proof.

Theorem 2. Suppose ε–DP primitive Laplace mechanisms are used and that the per-geolevel query strategies
and query PLB proportions are the same in each geolevel. Also suppose that the geolevel PLB allocated to
each of the c children of geounit (l, 1) are equal (ie: γ[l + 1, u] = γ[l + 1, v] for all u, v ∈ {1, . . . , c}). If
γ[l + 1, 1] ≥ (c − 1)γ[l, 1]/2, then, for any W and {α[i]}i, reallocating the PLB assigned to geounit (l, 1) to
its children will either decrease or leave unchanged each of the diagonal elements of Var(V x̂).

Proof. Let {γ0[l, u]}l,u and {γ1[l, u]}l,u denote the geounit PLB proportions before and after reallocation,
respectively. Likewise, let x̂0 and x̂1 denote the OLS estimate before and after reallocation, respectively.
Also, for the symmetric matrices C,D ∈ Rn×n we will use C ≤ D to denote the condition that C − D is
negative semidefinite and C ≤ 0 to denote the condition that C is negative semidefinite. The variance matrix
of the OLS estimate before (respectively, after) bypassing geounit (l, 1) is proportional to,

Var(x̂i) =((diag(γi)A⊗W )>(diag(γi)A⊗W ))−1

=((A>diag(γi)⊗W>)(diag(γi)A⊗W ))−1

=((A>diag(γ2
i )A)⊗ (W>W ))−1

=(A>diag(γ2
i )A)−1 ⊗ (W>W )−1,
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where i = 0 (respectively, i = 1). We will prove the sufficient condition that Var(x̂1) ≤ Var(x̂0). Given the
variance matrix of the OLS estimator above, this condition is equivalent to,

Var(x̂1) < Var(x̂0) ⇐⇒

(A>diag(γ2
1)A)−1 ⊗ (W>W )−1 ≤ (A>diag(γ2

0)A)−1 ⊗ (W>W )−1 ⇐⇒

((A>diag(γ2
1)A)−1 − (A>diag(γ2

0)A)−1)⊗ (W>W )−1 ≤ 0.

Since we assume that W>W is positive definite, this condition holds if and only if,

((A>diag(γ2
1)A)−1 − (A>diag(γ2

0)A)−1) ≤ 0 ⇐⇒

(A>diag(γ2
1)A)−1 ≤ (A>diag(γ2

0)A)−1 ⇐⇒

A>diag(γ2
1)A ≥ A>diag(γ2

0)A ⇐⇒

A>diag(γ2
1 − γ2

0)A ≥ 0

Note that the only elements of γ1 that are not equal to γ0 can be defined in terms of γ0 by γ1[l+ 1, u] =
γ0[l + 1, u] + γ0[l, 1] for all u ∈ {1, . . . c} and γ1[l, 1] = 0. Thus, A>diag(γ2

0 − γ2
1)A is a block matrix with a

single block that is nonzero. Let n[u] := b[l+ 1, u] for u ∈ {1 . . . , c}. This block is of dimension b[l, 1]× b[l, 1],
and is given by,

D :=


2γ0[l + 1, 1]γ0[l, 1]1n[1]1

>
n[1] −γ0[l, 1]21n[1]1

>
n[2] −γ0[l, 1]21n[1]1

>
n[3] · · ·

−γ0[l, 1]21n[2]1
>
n[1] 2γ0[l + 1, 2]γ0[l, 1]1n[2]1

>
n[2] −γ0[l, 1]21n[2]1

>
n[3]

−γ0[l, 1]21n[3]1
>
n[1] −γ0[l, 1]21n[3]1

>
n[2] 2γ0[l + 1, 3]γ0[l, 1]1n[3]1

>
n[3]

...
. . .

 .

This matrix only has c unique columns, and the vectors {ti}ci , where ti := (0>a[i],1
>
n[i]/n[i],0>b[i])

>, a[i] :=∑i−1
j=1 n[j] and a[i] :=

∑c
j=i+1 n[j], for i ∈ {1, . . . , c}, provide an orthogonal basis for the span of these

columns. Let T := horizontal stack({ti}i), Thus,

D ≥ 0 ⇐⇒ TDT> ≥ 0 ⇐⇒
2γ0[l + 1, 1]γ0[l, 1] −γ0[l, 1]2 −γ0[l, 1]2 · · ·
−γ0[l, 1]2 2p0(l + 1, 2)γ0[l, 1] −γ0[l, 1]2

−γ0[l, 1]2 −γ0[l, 1]2 2γ0[l + 1, 3]γ0[l, 1]
...

. . .

 ≥ 0 ⇐⇒

diag(1r(2γ0[l + 1, 1]γ0[l, 1] + γ0[l, 1]2))− 1r1
>
r γ0[l, 1]2 ≥ 0.

Since γ0[l, u] ≥ 0 for all l, u, the eigenvector corresponding to the smallest eigenvalue is 1r, so this matrix is
positive semidefinite when,

2γ0[l + 1, 1]γ0[l, 1] ≥ (c− 1)γ0[l, 1]2.

Since (l, 1) was not bypassed in our initial PLB allocation, γ0[l, 1] 6= 0, so we have,

γ0[l + 1, 1] ≥ (c− 1)γ0[l, 1]/2.

�
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Remark 1. Consider two cases in which the only query in W is a total population query. First, if the parent is
not bypassed, we could construct unbiased estimates of the total population of the parent by either observing
the DP answer for the parent directly, which has a variance of 2/γ[l, 1]2, or by summing the DP answers of the
children together, which has a variance of 2c/γ[l+ 1, 1]2. The mean with inverse variance weighting provides
the linear combination of these estimates with the lowest possible variance of 2c/(cγ[l, 1]2 + γ[l + 1, 1]2) in
this case. Second, if we did bypass the parent, we could estimate the total population query for the parent
by summing the total population of the children, which would have a variance of 2c/(γ[l + 1, 1] + γ[l, 1])2

in this case. The theorem above can be viewed as a statement that limiting our attention to a single total
population query, and to only the parent and its children, in this way is without loss of generality, at least
for the purpose of finding the cases in which bypassing the parent does not increase the expected error for
any query in any geounit. This is because 2c/(cγ[l, 1]2 + γ[l + 1, 1]2) ≥ 2c/(γ[l + 1, 1] + γ[l, 1])2 if and only
if γ[l + 1, 1] ≥ (c− 1)γ[l, 1]/2, which is the same requirement given in the statement of the theorem. �

Remark 2. This theorem may be of independent interest in the DP literature because other authors have
already considered strategy matrices that have a hierarchical structure that is analogous to the matrix
representation of the spine A above, and this result can be used to narrow the search space of the set of
hierarchical strategy matrices considered when choosing a strategy matrix with this property [9, 11]. For
example, when using the OLS approach described by [9] with PLB proportions that are the same for each
level of the hierarchy and with the children of each non-leaf node defined by either two or three sub-intervals
of the range of the parent node, this result implies that the the expected squared error of an arbitrary linear
query can be reduced by increasing the number of sub-intervals used to define these child nodes. �

One can use a similar technique to show that, in the case in which ρ–zCDP primitive Gaussian mechanisms
are used to define y, bypassing a parent will increase at least one diagonal element of Var(V x̂) whenever the
parent has two or more children, and the diagonal elements of Var(V x̂) will remain unchanged whenever the
parent has only one child. In part for this reason, our decision rule for the case in which ρ–zCDP primitive
Gaussian mechanisms are used is simply to bypass parent geounits with only one child. However, given the
top-down manner in which the TDA fixes estimates to ensure consistency with the estimates of the parent
geounits, the estimates of a child geounit are fixed by those of the parent geounit whenever the parent only
has one child geounit. Thus, we need not solely rely on the change in the diagonal elements of Var(V x̂) to
motivate the decision rule for this case; an alternative motivation is provided in the following observation.
Note that the decision rule provided in Theorem 2 results in at least the same number of geounits being
bypassed, since, whenever c = 1, the condition in the statement of the theorem becomes γ[l + 1, 1] ≥ 0, and
we require each γ[l, u] to be non-negative.

Observation 1. The DP primitive mechanism answers for each child geounit that does not have a sibling
geounit are not used. Thus, the variance of the DP primitive mechanisms output that are actually used to
construct the final estimates in the TDA can be decreased by bypassing all parent geounits with only one
child.

Algorithm 3 summarizes how both of these decision rules are used within the spine optimization routines
of the TDA. Note that this algorithm starts at the block group geolevel rather than the US, which ensures
that no remaining geounits can be bypassed after only one pass over the spine.

Algorithm 3: Move Spine to Pareto Frontier(B, {β[l, u]}l,u,pure DP ∈ {>,⊥})
for l ∈ {L− 1, L− 2, . . . , 1} do

for parent in geolevel l do
β child ← minu∈Children(parent) β[l + 1, u]
β parent ← β[l,parent]
c← Card(Children(parent))
if pure DP ∧ β child ≥ (c− 1)β parent/2 then

B, {β[l, u]}l,u ← Bypass Parent Geounit(parent, B, {β[l, u]}l,u)

else if c = 1 then
B, {β[l, u]}l,u ← Bypass Parent Geounit(parent, B, {β[l, u]}l,u)

return B, {β[l, u]}l,u
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5.1. The impact of Spine Optimization on the Privacy Guarantees of TDA. Note that the using
the TDA with the spine that is output from Algorithm 2 does not alter the privacy guarantees of the TDA
because the same arguments used in the proof of Theorem 1 apply in this case as well. However, this cannot
be said for the spine that is output from Algorithm 3 when at least one geounit is bypassed. The following
theorem generalizes the argument used in 1 to show that using the spine output from Algorithm 3 within
the TDA does not impact the privacy guarantees.

Theorem 3. Suppose the primitive mechanism M(x) outputs {(A[l]u,· ⊗W [l])x + y[l, u]}l,u, where each

A[l] ∈ {0, 1}U [l]×b[1,1] is the matrix representation of geolevel l ∈ {1, . . . , L} of the spine output from the
spine optimization routines described in Sections 4 and 5, each W [l] is defined by vertically stacking the

query group matrices {Q[i, l]}q[l]i=1 with Q[i, l] of dimension m[i, l]×n, x is the true histogram cell counts, and
y[l, u] is a vector of either independent random variables or has all elements equal to ∞.

Also, let the input geolevel PLB or precision proportions {β[l]}l be defined so that β[l] ∈ R++ and
∑
l β[l],

and let {γ[l, u]}l,u denote the resulting geolevel PLB or precision proportions that is output from the spine

optimization routines. Likewise, for each geolevel l ∈ {1, . . . , L}, let each α[i, l] ∈ {α[i, l]}q[l]i=1, be defined so
that α[i, l] ∈ R++ and

∑
i α[i, l] = 1, and let α[l] := stack({α[i, l]m[i,l]}i). Then we have the following.

(1) If y[l, u] =∞ when γ[l, u] = 0, and is distributed as either y[l, u] ∼ Laplace(0,diag(2�(εγ[l, u]α[l])))
or y[l, u] ∼ LaplaceZ(0,diag(2� (εγ[l, u]α[l]))), when γ[l, u] > 0, then both M(·) and the TDA are
ε–DP with respect to the neighbor definition {x, x′ ∈ X d ∩ G | dH(x, x′) = 2}.

(2) If y[l, u] =∞ when γ[l, u] = 0, and is distributed as either y[l, u] ∼ N(0,diag(1� (ργ[l, u]α[l]))) or
y[l, u] ∼ NZ(0,diag(1� (ργ[l, u]α[l]))), when γ[l, u] > 0, then both M(·) and the TDA are ρ–zCDP
with respect to the neighbor definition {x, x′ ∈ X d ∩ G | dH(x, x′) = 2}.

Proof. For x ∈ X d ∩ G, let the set of datasets x′ ∈ X d ∩ G that differ from x on a single entry be denoted
by N(x). Also, let T [l] := {u ∈ Z++ | u < U [l] ∧ γ[l, u] > 0}. Note that the output of all of the DP
primitive mechanisms is observationally equivalent the set of finite output elements, or {(A[l]u,· ⊗W [l])x+
y[l, u]}l,u∈T [l], because, independently of the data, the remaining DP primitive answers are infinite with
probability one. Thus, without loss of generality, we can restrict our attention to this alternative mechanism.

Let Â[l] := A[l]T [l],·, and γ̂[l] := stack({γ[l, u]}l,u∈T [l]), so the strategy matrix for this alternative mechanism
can be written as,

D := stack({Â[l]⊗W [l]}l).

In the case of the first result of the theorem, the noise for this mechanism is distributed as either ŷ ∼
Laplace(0,diag(b̂)) or ŷ ∼ LaplaceZ(0,diag(b̂)), where b̂ := stack({b̂[l]}l) and b[l] := 2 � (ε(γ̂[l] ⊗ α[l])).
Thus, we will show the following condition, which, by the first result in Lemma 3, is a sufficient condition,

max
x∈Xd∩G, x′∈N(x)

∑
i

∣∣∣Di,·(x− x′)/b̂i
∣∣∣ ≤ ε.(9)

Starting from the left hand side of this inequality, we have,

max
x∈Xd∩G, x′∈N(x)

∑
i

∣∣∣∣(diag(1� b̂)D
)
i,·

(x− x′)
∣∣∣∣ ≤ 2 max

j

∑
i

(
diag(1� b̂)D

)
i,j

=

2 max
j

∑
i

stack
(
{diag (ε(γ̂[l]⊗α[l])/2) (Â[l]⊗W [l])}l

)
i,j

=

εmax
j

∑
l

∑
i

(
diag(γ̂[l])Â[l]⊗ diag(α[l])W [l]

)
i,j
.(10)

Note that each of the row sums of diag(α[l])W [l] (i.e.: the elements of the vector W [l]>diag(α[l])1 =
W [l]>α[l]) are equal to 1 because

∑
kQ[i, l]k,· = 1> and

∑
k α[k, l] = 1. Thus, since each column j of

diag(γ̂[l])Â[l] contains at most one nonzero value, we have,
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εmax
j

∑
l

∑
i

(
(diag(γ̂[l])Â[l])⊗ (diag(α[l])W [l])

)
i,j

=

εmax
j

∑
l

∑
i

(
diag(γ̂[l])Â[l]

)
i,j

= εmax
j

∑
i

(
diag(γ̂)Â

)
i,j
,

where γ̂ := stack({γ̂[l]}l). Note that
∑
i

(
diag(γ̂)Â

)
i,j

is equal to the sum of the geolevel PLB proportions

along a path from the US geounit to the block geounit j. Since the bypass operation used within Algorithm
3 does not change this sum, and its initial value is

∑
l β[l] = 1, we have

εmax
j

∑
i

(
diag(γ̂)Â

)
i,j

= ε
∑
l

β[l] = ε,

which implies inequality (9).
Similar logic also implies the second result of the theorem. Specifically, in this case we can use the second

result of Lemma 3, and the fact that for each x ∈ X d∩G and x′ ∈ N(x) we have (Di,·(x−x′))2 = |Di,·(x− x′)| ,
to derive the sufficient condition,

max
x∈Xd, x′∈N(x)

∑
i

|Di,·(x− x′)| /σ̂2
i ≤ 2ρ,(11)

where σ̂2 := stack({σ̂2[l]}l) and σ̂2[l] := 1� (ρ(γ̂[l]⊗α[l])). This inequality follows from,

max
x∈Xd∩G, x′∈N(x)

∑
i

|Di,·(x− x′)| /σ̂2
i ≤ 2 max

j

∑
i

(
diag(1� σ̂2)D

)
i,j

=

2ρmax
j

∑
i

(diag(γ̂[l]⊗α[l])D)i,j .(12)

Since this last value is equal to the value of (10) multiplied by 2ρ/ε, and the logic above implies the value of
(10) is equal to ε, we have,

2ρmax
j

∑
i

(diag(γ̂[l]⊗α[l])D)i,j = ε · (2ρ/ε) = 2ρ,

which implies the sufficient condition (11). �

6. Conclusion

This document describes both stages of the spine optimization routines used in the TDA. The first stage
brings OSEs closer to the spine by redefining block groups and tract groups, and the second stage bypasses
geounits with low-fanouts using a decision rule that is motivated by the expected squared errors of the
ordinary least squares estimator. This final section also provides a result that spine optimization does not
alter the privacy guarantees of the TDA.
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